
tfdeploy
Release 0.4.0

Mar 30, 2017

Contents

1 Classes 3
1.1 Model . 3
1.2 Tensor . 4
1.3 Operation . 4
1.4 Ensemble . 6
1.5 TensorEnsemble . 7

2 Functions 9
2.1 setup . 9
2.2 reset . 9
2.3 optimize . 9
2.4 print_tensor . 10
2.5 print_op . 10
2.6 print_tf_tensor . 10
2.7 print_tf_op . 10

3 Other Attributes 11

4 Exceptions 13
4.1 UnknownOperationException . 13
4.2 OperationMismatchException . 13
4.3 InvalidImplementationException . 13
4.4 UnknownImplementationException . 13
4.5 UnknownEnsembleMethodException . 14
4.6 EnsembleMismatchException . 14
4.7 ScipyOperationException . 14

Python Module Index 15

i

ii

tfdeploy, Release 0.4.0

This page contains only API docs. For more info, visit tfdeploy on GitHub.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.

Contents 1

https://github.com/riga/tfdeploy

tfdeploy, Release 0.4.0

2 Contents

CHAPTER 1

Classes

Model

class tfdeploy.Model(path=None)
A trained model that contains one or more converted tensorflow graphs. When path is set, a previously saved
model is loaded from that path. Usage:

import tensorflow as tf
import tfdeploy as td

build your graph, use names for input and output tensors
sess = tf.Session()
x = tf.placeholder("float", shape=[None, 784], name="input")
W = tf.Variable(tf.truncated_normal([784, 100], stddev=0.05))
b = tf.Variable(tf.zeros([100]))
y = tf.nn.softmax(tf.matmul(x, W) + b, name="output")
sess.run(tf.initialize_all_variables())

... training ...

create a model and save it to disk
model = td.Model()
model.add(y, sess)
model.save("/path/to/model.pkl")

And then in an other file:

import tfdeploy as td
import numpy as np

model = td.Model("/path/to/model.pkl")
inp, outp = model.get("input", "output")

batch = np.random.rand(10000, 784)
result = outp.eval({inp: batch})

3

tfdeploy, Release 0.4.0

roots
Contained root tensors in a dict mapped to a key.

get(*names, key=None)
Returns one or more Tensor instances given by names using a deep lookup within the model. If key is
not None, only the root tensor with that key is traversed. None is returned when no tensor was found. In
case a tensor is passed, it’s name is used for the lookup.

add(tensor, tf_sess=None, key=None, **kwargs)
Adds a new root tensor for a key which, if None, defaults to a consecutive number. When tensor is not an
instance of Tensor but an instance of tensorflow.Tensor, it is converted first. In that case, tf_sess
should be a valid tensorflow session and kwargs are forwarded to the Tensor constructor.

load(path)
Loads all tensors from a file defined by path and adds them to the root set.

save(path)
Saves all tensors of the root set to a file defined by path.

Tensor

class tfdeploy.Tensor(tf_tensor, tf_sess, tf_feed_dict=None)
Building block of a model. In graph terms, tensors represent connections between nodes (ops) of a graph. It
contains information on the op it results from. The conversion uses the (tensorflow) instances tf_tensor and
tf_sess, tf_feed_dict can be set to evaluate the tensor’s current value.

name
The name of the tensor.

value_index
The integer value index of this tensor, i.e., the position in the op’s output list.

op
The op instance that defines the value of this tensor. When created from a tensorflow.Placeholder
or a tensorflow.Variable/V2, op will be None.

value
The value of this tensor. When created from a tensorflow.Variable/V2, this will be the value of
that variable, or None otherwise until it is evaluated the first time.

get(*names)
Returns one or more tensors given by names using a deep lookup within the inputs of the op. Note that
this tensor is returned when the name matches. None is returned when no tensor was found.

eval(feed_dict=None)
Returns the value of this tensor based on the evaluation of all dependent ops and tensors. You can overwrite
values of dependent tensors using feed_dict, a mapping of tensors to numpy arrays, which is passed down
the evaluation chain.

Operation

class tfdeploy.Operation(tf_op, *args, **kwargs)
Building block of a model. In graph terms, operations (ops) represent nodes that are connected via tensors.
It contains information on its input tensors. The conversion uses the (tensorflow) instance tf_op, all args and

4 Chapter 1. Classes

tfdeploy, Release 0.4.0

kwargs are forwarded to the Tensor constructor for this op’s input tensors. Op instances can have multiple im-
plementations, i.e., different methods that lead to equivalent results but might use additional third-party software
such as scipy. To select a specific implementation, invoke use_impl():

tell SomeOp to use the scipy implementation of its op logic
SomeOp.use_impl(IMPL_SCIPY)

See add_impl() for more info about adding new implementations.

types
classmember

A tuple containing the types of tensorflow ops that this op can represent.

unpack
classmember

If True (default), the values of evaluated input tensors are forwarded to func as single arguments, or,
otherwise, as a list.

attrs
classmember

Names of the configuration attributes of the original tensorflow op in a tuple.

name
The name of the op.

inputs
Tuple of tensors that are input to this op. Their order is important as they are forwarded to func for
evaluation.

kwargs
Keyword arguments containing configuration values that will be passed to func.

classmethod new(tf_op, *args, **kwargs)
Factory function that takes a tensorflow op tf_op and returns an instance of the appropriate op
class. args and kwargs are forwarded to the op constructor. Raises an exception of type
UnknownOperationException in case the requested op type is not known.

set_attr(attr, value)
Overwrites the value of an attribute attr with a new value.

get(*names)
Returns one or more tensors given by names using a deep lookup within this op. None is returned when no
tensor was found.

eval(feed_dict=None)
Returns the value of all output tensors in a tuple. See Tensor.eval() for more info.

classmethod func(*args)
The actual op logic. By default, the method call is forwareded to the implementation-specific version
which is determined using impl. Overwrite this method in inheriting classes to disable this feature. Must
return a tuple.

static func_numpy(*args)
Numpy implementation of the op logic. Returns a tuple.

static func_scipy(*args)
Scipy implementation of the op logic. Returns a tuple.

classmethod factory(func=None, impl=IMPL_NUMPY, **kwargs)
Returns a new op class whose static function will be set to func. The name of func will also be the op class

1.3. Operation 5

tfdeploy, Release 0.4.0

name. impl is the default implementation type of the op. kwargs are used to update the class dict of the
newly created op class.

classmethod use_impl(impl)
Switches the implementation type to impl. Returns the previous type.

classmethod add_impl(impl)
Decorator to add an additional implementation to this op. Example:

initial implementation using factory, defaults to numpy
@Operation.factory
def MyOp(a, b):

use numpy only
return ...

also add a scipy implementation
@MyOp.add_impl(IMPL_SCIPY)
def MyOp(a, b):

also use scipy
return ...

Ensemble

class tfdeploy.Ensemble(paths=None, method=0)
An ensemble is a wrapper around multiple models to compute ensemble values. It can initialized with a list of
model paths and an ensembling method that decides how to compute the merged value.

create the ensemble
ensemble = Ensemble(["model1.pkl", "model2.pkl", ...], METHOD_MEAN)

get input and output tensors (which actually are TensorEnsemble instances)
input, output = ensemble.get("input", "output")

evaluate the ensemble just like a normal model
batch = ...
value = output.eval({input: batch})

If you want to use another method than METHOD_MEAN, METHOD_MAX or METHOD_MAX, use
METHOD_CUSTOM and overwrite the func_custom method of the TensorEnsemble instance.

models
A list that contains all read models.

method
The ensembling method.

get(*names, key=None)
Returns one or more TensorEnsemble instances given by names using a deep lookup within all read
models. Each returned tensor ensemble will have len(models) tensors. If a model does not contain
a specific tensor defined by a specific name, the associated ensemble tensor will contain a None for that
model in its tensors. If key is not None, only the root tensors with that key are traversed.

load(paths)
Loads models from a list of paths.

6 Chapter 1. Classes

tfdeploy, Release 0.4.0

TensorEnsemble

class tfdeploy.TensorEnsemble(tensors, method=0)
A tensor ensemble basically contains a list of tensors that correspond to models of an Ensemble instance.

eval(feed_dict=None)
Evaluates all contained tensors using a feed_dict and returns the ensemble value. The keys of feed_dict
must be tensor ensembles. Its values can be batches, i.e., numpy arrays, or lists or tuples of batches. In
the latter case, these lists or tuples must have the same length as the list of stored tensors as they will be
mapped.

func(values)
The actual ensembling logic that combines multiple values. The method call is forwareded tothe ensemble
method-specific variant which is determined using method.

1.5. TensorEnsemble 7

tfdeploy, Release 0.4.0

8 Chapter 1. Classes

CHAPTER 2

Functions

setup

tfdeploy.setup(tf, order=None)
Sets up global variables (currently only the tensorflow version) to adapt to peculiarities of different tensorflow
versions. This function should only be called before Model creation, not for evaluation. Therefore, the tensor-
flow module tf must be passed:

import tensorflow as tf
import tfdeploy as td

td.setup(tf)

...

Also, when order is not None, it is forwarded to optimize() for convenience.

reset

tfdeploy.reset()
Resets the instance caches of TensorRegister and OperationRegister.

optimize

tfdeploy.optimize(impl)
Tries to set the implementation type of all registered Operation classes to impl. This has no effect when an
op does not implement that type.

The behavior is equivalent to:

9

tfdeploy, Release 0.4.0

for op in Operation.__subclasses__():
if impl in op.impls:

op.use_impl(impl)

impl can also be a list or tuple of valid implementation types representing a preferred order.

print_tensor

tfdeploy.print_tensor(td_tensor, indent=” “, max_depth=-1)
Prints the dependency graph of a Tensor td_tensor, where each new level is indented by indent. When
max_depth is positive, the graph is truncated at that depth, where each tensor and each op count as a level.

print_op

tfdeploy.print_op(td_op, indent=” “, max_depth=-1)
Prints the dependency graph of a Operation td_op, where each new level is indented by indent. When
max_depth is positive, the graph is truncated at that depth, where each tensor and each op count as a level.

print_tf_tensor

tfdeploy.print_tf_tensor(tf_tensor, indent=” “, max_depth=-1)
Prints the dependency graph of a tensorflow tensor tf_tensor, where each new level is indented by indent. When
max_depth is positive, the graph is truncated at that depth, where each tensor and each op count as a level.

print_tf_op

tfdeploy.print_tf_op(tf_tensor, indent=” “, max_depth=-1)
Prints the dependency graph of a tensorflow operation tf_op, where each new level is indented by indent. When
max_depth is positive, the graph is truncated at that depth, where each tensor and each op count as a level.

10 Chapter 2. Functions

CHAPTER 3

Other Attributes

tfdeploy.IMPL_NUMPY
Implementation type for ops that use numpy (the default).

tfdeploy.IMPL_SCIPY
Implementation type for ops that use scipy.

tfdeploy.HAS_SCIPY
A flag that is True when scipy is available on your system.

11

tfdeploy, Release 0.4.0

12 Chapter 3. Other Attributes

CHAPTER 4

Exceptions

UnknownOperationException

exception tfdeploy.UnknownOperationException
An exception which is raised when trying to convert an unknown tensorflow.

OperationMismatchException

exception tfdeploy.OperationMismatchException
An exception which is raised during instantiation of an op whose type does not match the underlying tensorflow
op.

InvalidImplementationException

exception tfdeploy.InvalidImplementationException
An exception which is raised when an implementation of an unknown type is registered for an Operation
class.

UnknownImplementationException

exception tfdeploy.UnknownImplementationException
An exception which is raised when an Operation instance is requested to use an implementation type that
was not yet added.

13

tfdeploy, Release 0.4.0

UnknownEnsembleMethodException

exception tfdeploy.UnknownEnsembleMethodException
An exception which is raised when an Ensemble instance is initialised with an unknown ensemle method.

EnsembleMismatchException

exception tfdeploy.EnsembleMismatchException
An exception which is raised when a TensorEnsemble instance is evaluated with a feed_dict whose keys,
i.e. also TensorEnsemble instances, do not match the tensor to evaluate. An example would be that a tensor
ensemble with n tensors is evaluated with a tensor ensemble it its feed_dict that contains m tensors.

ScipyOperationException

exception tfdeploy.ScipyOperationException(attr)
An exception which is raised when trying to evaluate an op that uses scipy internally and scipy is not available.

14 Chapter 4. Exceptions

Python Module Index

t
tfdeploy, 1

15

tfdeploy, Release 0.4.0

16 Python Module Index

Index

A
add() (tfdeploy.Model method), 4
add_impl() (tfdeploy.Operation class method), 6
attrs (tfdeploy.Operation attribute), 5

C
classmember (tfdeploy.Operation attribute), 5

E
Ensemble (class in tfdeploy), 6
EnsembleMismatchException, 14
eval() (tfdeploy.Operation method), 5
eval() (tfdeploy.Tensor method), 4
eval() (tfdeploy.TensorEnsemble method), 7

F
factory() (tfdeploy.Operation class method), 5
func() (tfdeploy.Operation class method), 5
func() (tfdeploy.TensorEnsemble method), 7
func_numpy() (tfdeploy.Operation static method), 5
func_scipy() (tfdeploy.Operation static method), 5

G
get() (tfdeploy.Ensemble method), 6
get() (tfdeploy.Model method), 4
get() (tfdeploy.Operation method), 5
get() (tfdeploy.Tensor method), 4

H
HAS_SCIPY (in module tfdeploy), 11

I
IMPL_NUMPY (in module tfdeploy), 11
IMPL_SCIPY (in module tfdeploy), 11
inputs (tfdeploy.Operation attribute), 5
InvalidImplementationException, 13

K
kwargs (tfdeploy.Operation attribute), 5

L
load() (tfdeploy.Ensemble method), 6
load() (tfdeploy.Model method), 4

M
method (tfdeploy.Ensemble attribute), 6
Model (class in tfdeploy), 3
models (tfdeploy.Ensemble attribute), 6

N
name (tfdeploy.Operation attribute), 5
name (tfdeploy.Tensor attribute), 4
new() (tfdeploy.Operation class method), 5

O
op (tfdeploy.Tensor attribute), 4
Operation (class in tfdeploy), 4
OperationMismatchException, 13
optimize() (in module tfdeploy), 9

P
print_op() (in module tfdeploy), 10
print_tensor() (in module tfdeploy), 10
print_tf_op() (in module tfdeploy), 10
print_tf_tensor() (in module tfdeploy), 10

R
reset() (in module tfdeploy), 9
roots (tfdeploy.Model attribute), 4

S
save() (tfdeploy.Model method), 4
ScipyOperationException, 14
set_attr() (tfdeploy.Operation method), 5
setup() (in module tfdeploy), 9

T
Tensor (class in tfdeploy), 4

17

tfdeploy, Release 0.4.0

TensorEnsemble (class in tfdeploy), 7
tfdeploy (module), 1
types (tfdeploy.Operation attribute), 5

U
UnknownEnsembleMethodException, 14
UnknownImplementationException, 13
UnknownOperationException, 13
unpack (tfdeploy.Operation attribute), 5
use_impl() (tfdeploy.Operation class method), 6

V
value (tfdeploy.Tensor attribute), 4
value_index (tfdeploy.Tensor attribute), 4

18 Index

	Classes
	Model
	Tensor
	Operation
	Ensemble
	TensorEnsemble

	Functions
	setup
	reset
	optimize
	print_tensor
	print_op
	print_tf_tensor
	print_tf_op

	Other Attributes
	Exceptions
	UnknownOperationException
	OperationMismatchException
	InvalidImplementationException
	UnknownImplementationException
	UnknownEnsembleMethodException
	EnsembleMismatchException
	ScipyOperationException

	Python Module Index

