

tfdeploy

This page contains only API docs. For more info, visit tfdeploy on GitHub [https://github.com/riga/tfdeploy].

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running
numpy.

Classes

Model

	
class tfdeploy.Model(path=None)

	A trained model that contains one or more converted tensorflow graphs. When path is set, a
previously saved model is loaded from that path. Usage:

import tensorflow as tf
import tfdeploy as td

build your graph, use names for input and output tensors
sess = tf.Session()
x = tf.placeholder("float", shape=[None, 784], name="input")
W = tf.Variable(tf.truncated_normal([784, 100], stddev=0.05))
b = tf.Variable(tf.zeros([100]))
y = tf.nn.softmax(tf.matmul(x, W) + b, name="output")
sess.run(tf.initialize_all_variables())

... training ...

create a model and save it to disk
model = td.Model()
model.add(y, sess)
model.save("/path/to/model.pkl")

And then in an other file:

import tfdeploy as td
import numpy as np

model = td.Model("/path/to/model.pkl")
inp, outp = model.get("input", "output")

batch = np.random.rand(10000, 784)
result = outp.eval({inp: batch})

	
roots

	Contained root tensors in a dict mapped to a key.

	
get(*names, key=None)

	Returns one or more Tensor instances given by names using a deep lookup within
the model. If key is not None, only the root tensor with that key is traversed. None
is returned when no tensor was found. In case a tensor is passed, it’s name is used for the
lookup.

	
add(tensor, tf_sess=None, key=None, **kwargs)

	Adds a new root tensor for a key which, if None, defaults to a consecutive number.
When tensor is not an instance of Tensor but an instance of
tensorflow.Tensor, it is converted first. In that case, tf_sess should be a valid
tensorflow session and kwargs are forwarded to the Tensor constructor.

	
load(path)

	Loads all tensors from a file defined by path and adds them to the root set.

	
save(path)

	Saves all tensors of the root set to a file defined by path.

Tensor

	
class tfdeploy.Tensor(tf_tensor, tf_sess, tf_feed_dict=None)

	Building block of a model. In graph terms, tensors represent connections between nodes (ops)
of a graph. It contains information on the op it results from. The conversion uses the
(tensorflow) instances tf_tensor and tf_sess, tf_feed_dict can be set to evaluate the
tensor’s current value.

	
name

	The name of the tensor.

	
value_index

	The integer value index of this tensor, i.e., the position in the op’s output list.

	
op

	The op instance that defines the value of this tensor. When created from a
tensorflow.Placeholder or a tensorflow.Variable/V2, op will be None.

	
value

	The value of this tensor. When created from a tensorflow.Variable/V2, this will be the
value of that variable, or None otherwise until it is evaluated the first time.

	
get(*names)

	Returns one or more tensors given by names using a deep lookup within the inputs of the
op. Note that this tensor is returned when the name matches. None is returned when no
tensor was found.

	
eval(feed_dict=None)

	Returns the value of this tensor based on the evaluation of all dependent ops and tensors.
You can overwrite values of dependent tensors using feed_dict, a mapping of tensors to
numpy arrays, which is passed down the evaluation chain.

Operation

	
class tfdeploy.Operation(tf_op, *args, **kwargs)

	Building block of a model. In graph terms, operations (ops) represent nodes that are connected
via tensors. It contains information on its input tensors. The conversion uses the
(tensorflow) instance tf_op, all args and kwargs are forwarded to the Tensor
constructor for this op’s input tensors. Op instances can have multiple implementations, i.e.,
different methods that lead to equivalent results but might use additional third-party software
such as scipy. To select a specific implementation, invoke use_impl():

tell SomeOp to use the scipy implementation of its op logic
SomeOp.use_impl(IMPL_SCIPY)

See add_impl() for more info about adding new implementations.

	
types

	
classmember

	A tuple containing the types of tensorflow ops that this op can represent.

	
unpack

	
classmember

	If True (default), the values of evaluated input tensors are forwarded to func as single
arguments, or, otherwise, as a list.

	
attrs

	
classmember

	Names of the configuration attributes of the original tensorflow op in a tuple.

	
name

	The name of the op.

	
inputs

	Tuple of tensors that are input to this op. Their order is important as they are forwarded to
func for evaluation.

	
kwargs

	Keyword arguments containing configuration values that will be passed to func.

	
classmethod new(tf_op, *args, **kwargs)

	Factory function that takes a tensorflow op tf_op and returns an instance of the
appropriate op class. args and kwargs are forwarded to the op constructor. Raises an
exception of type UnknownOperationException in case the requested op type is not
known.

	
set_attr(attr, value)

	Overwrites the value of an attribute attr with a new value.

	
get(*names)

	Returns one or more tensors given by names using a deep lookup within this op. None is
returned when no tensor was found.

	
eval(feed_dict=None)

	Returns the value of all output tensors in a tuple. See Tensor.eval() for more
info.

	
classmethod func(*args)

	The actual op logic. By default, the method call is forwareded to the
implementation-specific version which is determined using impl. Overwrite this method in
inheriting classes to disable this feature. Must return a tuple.

	
static func_numpy(*args)

	Numpy implementation of the op logic. Returns a tuple.

	
static func_scipy(*args)

	Scipy implementation of the op logic. Returns a tuple.

	
classmethod factory(func=None, impl=IMPL_NUMPY, **kwargs)

	Returns a new op class whose static function will be set to func. The name of func will
also be the op class name. impl is the default implementation type of the op. kwargs are
used to update the class dict of the newly created op class.

	
classmethod use_impl(impl)

	Switches the implementation type to impl. Returns the previous type.

	
classmethod add_impl(impl)

	Decorator to add an additional implementation to this op. Example:

initial implementation using factory, defaults to numpy
@Operation.factory
def MyOp(a, b):
 # use numpy only
 return ...

also add a scipy implementation
@MyOp.add_impl(IMPL_SCIPY)
def MyOp(a, b):
 # also use scipy
 return ...

Ensemble

	
class tfdeploy.Ensemble(paths=None, method=0)

	An ensemble is a wrapper around multiple models to compute ensemble values. It can initialized
with a list of model paths and an ensembling method that decides how to compute the merged
value.

create the ensemble
ensemble = Ensemble(["model1.pkl", "model2.pkl", ...], METHOD_MEAN)

get input and output tensors (which actually are TensorEnsemble instances)
input, output = ensemble.get("input", "output")

evaluate the ensemble just like a normal model
batch = ...
value = output.eval({input: batch})

If you want to use another method than METHOD_MEAN, METHOD_MAX or METHOD_MAX, use
METHOD_CUSTOM and overwrite the func_custom method of the TensorEnsemble
instance.

	
models

	A list that contains all read models.

	
method

	The ensembling method.

	
get(*names, key=None)

	Returns one or more TensorEnsemble instances given by names using a deep
lookup within all read models. Each returned tensor ensemble will have len(models)
tensors. If a model does not contain a specific tensor defined by a specific name, the
associated ensemble tensor will contain a None for that model in its tensors. If key is
not None, only the root tensors with that key are traversed.

	
load(paths)

	Loads models from a list of paths.

TensorEnsemble

	
class tfdeploy.TensorEnsemble(tensors, method=0)

	A tensor ensemble basically contains a list of tensors that correspond to models of an
Ensemble instance.

	
eval(feed_dict=None)

	Evaluates all contained tensors using a feed_dict and returns the ensemble value. The keys
of feed_dict must be tensor ensembles. Its values can be batches, i.e., numpy arrays, or
lists or tuples of batches. In the latter case, these lists or tuples must have the same
length as the list of stored tensors as they will be mapped.

	
func(values)

	The actual ensembling logic that combines multiple values. The method call is forwareded
tothe ensemble method-specific variant which is determined using method.

Functions

setup

	
tfdeploy.setup(tf, order=None)

	Sets up global variables (currently only the tensorflow version) to adapt to peculiarities of
different tensorflow versions. This function should only be called before Model
creation, not for evaluation. Therefore, the tensorflow module tf must be passed:

import tensorflow as tf
import tfdeploy as td

td.setup(tf)

...

Also, when order is not None, it is forwarded to optimize() for convenience.

reset

	
tfdeploy.reset()

	Resets the instance caches of TensorRegister and OperationRegister.

optimize

	
tfdeploy.optimize(impl)

	Tries to set the implementation type of all registered Operation classes to impl.
This has no effect when an op does not implement that type.

The behavior is equivalent to:

for op in Operation.__subclasses__():
 if impl in op.impls:
 op.use_impl(impl)

impl can also be a list or tuple of valid implementation types representing a preferred order.

print_tensor

	
tfdeploy.print_tensor(td_tensor, indent=" ", max_depth=-1)

	Prints the dependency graph of a Tensor td_tensor, where each new level is
indented by indent. When max_depth is positive, the graph is truncated at that depth, where
each tensor and each op count as a level.

print_op

	
tfdeploy.print_op(td_op, indent=" ", max_depth=-1)

	Prints the dependency graph of a Operation td_op, where each new level is indented
by indent. When max_depth is positive, the graph is truncated at that depth, where each
tensor and each op count as a level.

print_tf_tensor

	
tfdeploy.print_tf_tensor(tf_tensor, indent=" ", max_depth=-1)

	Prints the dependency graph of a tensorflow tensor tf_tensor, where each new level is indented
by indent. When max_depth is positive, the graph is truncated at that depth, where each
tensor and each op count as a level.

print_tf_op

	
tfdeploy.print_tf_op(tf_tensor, indent=" ", max_depth=-1)

	Prints the dependency graph of a tensorflow operation tf_op, where each new level is indented
by indent. When max_depth is positive, the graph is truncated at that depth, where each
tensor and each op count as a level.

Other Attributes

	
tfdeploy.IMPL_NUMPY

	Implementation type for ops that use numpy (the default).

	
tfdeploy.IMPL_SCIPY

	Implementation type for ops that use scipy.

	
tfdeploy.HAS_SCIPY

	A flag that is True when scipy is available on your system.

Exceptions

UnknownOperationException

	
exception tfdeploy.UnknownOperationException

	An exception which is raised when trying to convert an unknown tensorflow.

OperationMismatchException

	
exception tfdeploy.OperationMismatchException

	An exception which is raised during instantiation of an op whose type does not match the
underlying tensorflow op.

InvalidImplementationException

	
exception tfdeploy.InvalidImplementationException

	An exception which is raised when an implementation of an unknown type is registered for an
Operation class.

UnknownImplementationException

	
exception tfdeploy.UnknownImplementationException

	An exception which is raised when an Operation instance is requested to use an
implementation type that was not yet added.

UnknownEnsembleMethodException

	
exception tfdeploy.UnknownEnsembleMethodException

	An exception which is raised when an Ensemble instance is initialised with an
unknown ensemle method.

EnsembleMismatchException

	
exception tfdeploy.EnsembleMismatchException

	An exception which is raised when a TensorEnsemble instance is evaluated with a
feed_dict whose keys, i.e. also TensorEnsemble instances, do not match the tensor
to evaluate. An example would be that a tensor ensemble with n tensors is evaluated with a
tensor ensemble it its feed_dict that contains m tensors.

ScipyOperationException

	
exception tfdeploy.ScipyOperationException(attr)

	An exception which is raised when trying to evaluate an op that uses scipy internally and scipy
is not available.

 Python Module Index

 t

 		 	

 		
 t	

 	
 	
 tfdeploy	

Index

 A
 | C
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	add() (tfdeploy.Model method)

 	
 	add_impl() (tfdeploy.Operation class method)

 	attrs (tfdeploy.Operation attribute)

C

 	
 	classmember (tfdeploy.Operation attribute), [1], [2]

E

 	
 	Ensemble (class in tfdeploy)

 	EnsembleMismatchException

 	
 	eval() (tfdeploy.Operation method)

 	(tfdeploy.Tensor method)

 	(tfdeploy.TensorEnsemble method)

F

 	
 	factory() (tfdeploy.Operation class method)

 	func() (tfdeploy.Operation class method)

 	(tfdeploy.TensorEnsemble method)

 	
 	func_numpy() (tfdeploy.Operation static method)

 	func_scipy() (tfdeploy.Operation static method)

G

 	
 	get() (tfdeploy.Ensemble method)

 	(tfdeploy.Model method)

 	(tfdeploy.Operation method)

 	(tfdeploy.Tensor method)

H

 	
 	HAS_SCIPY (in module tfdeploy)

I

 	
 	IMPL_NUMPY (in module tfdeploy)

 	IMPL_SCIPY (in module tfdeploy)

 	
 	inputs (tfdeploy.Operation attribute)

 	InvalidImplementationException

K

 	
 	kwargs (tfdeploy.Operation attribute)

L

 	
 	load() (tfdeploy.Ensemble method)

 	(tfdeploy.Model method)

M

 	
 	method (tfdeploy.Ensemble attribute)

 	
 	Model (class in tfdeploy)

 	models (tfdeploy.Ensemble attribute)

N

 	
 	name (tfdeploy.Operation attribute)

 	(tfdeploy.Tensor attribute)

 	
 	new() (tfdeploy.Operation class method)

O

 	
 	op (tfdeploy.Tensor attribute)

 	Operation (class in tfdeploy)

 	
 	OperationMismatchException

 	optimize() (in module tfdeploy)

P

 	
 	print_op() (in module tfdeploy)

 	print_tensor() (in module tfdeploy)

 	
 	print_tf_op() (in module tfdeploy)

 	print_tf_tensor() (in module tfdeploy)

R

 	
 	reset() (in module tfdeploy)

 	
 	roots (tfdeploy.Model attribute)

S

 	
 	save() (tfdeploy.Model method)

 	ScipyOperationException

 	
 	set_attr() (tfdeploy.Operation method)

 	setup() (in module tfdeploy)

T

 	
 	Tensor (class in tfdeploy)

 	TensorEnsemble (class in tfdeploy)

 	
 	tfdeploy (module)

 	types (tfdeploy.Operation attribute)

U

 	
 	UnknownEnsembleMethodException

 	UnknownImplementationException

 	
 	UnknownOperationException

 	unpack (tfdeploy.Operation attribute)

 	use_impl() (tfdeploy.Operation class method)

V

 	
 	value (tfdeploy.Tensor attribute)

 	
 	value_index (tfdeploy.Tensor attribute)

 nav.xhtml

 Table of Contents

 		tfdeploy

_static/down.png

_static/minus.png

_static/up.png

_static/comment-close.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/logo.png

